All Issue

2018 Vol.34, Issue 11 Preview Page
November 2018. pp. 107-119
Abstract
PHC piles, extension-plate attached PHC piles, and steel pipe attached PHC piles were installed in field test site. Axial compressive static load tests including load distribution test and Pile Driving Analyzer (after driving) were done on the tip-transformed PHC piles and the grouted tip-transformed PHC piles. Load-displacement curves of three different type of PHC piles, which are PHC pile (TP-1), extension plate attached PHC pile (TP-2) and steel pipe attached PHC pile (TP-3), showed almost the same behavior. Thus bearing capacity increase effect of the tip-transformed PHC piles was negligible. Share ratio of side resistance and end bearing resistance for PHC pile, extension plate attached PHC pile, and steel pipe attached PHC pile were 95.8% vs. 4.2%, 95.6% vs. 4.4%, and 97.8% vs. 2.2% respectively.
PHC말뚝, 확장판 선단부착 PHC말뚝, 강관 선단부착 PHC말뚝을 현장 시험 부지에서 시험시공하였다. 이들 선단변형 PHC말뚝들에 대하여 하중전이측정이 수반된 연직압축정재하시험을 실시하였으며 시공직후 항타후 동재하시험을 수행하였다. 또한 선단부만 그라우팅한 선단변형PHC말뚝에 대한 연직압축정재하시험도 실시하였다. 3가지 다양한 선단말뚝들 즉, PHC말뚝, 확장판 선단부착 PHC말뚝, 강관 선단부착 PHC말뚝의 하중–침하량 거동은 거의 동일한 양상을 나타내었다. 따라서 말뚝이 선단지지층에 근입된 길이가 동일하고 말뚝 본체의 직경이 동일할 경우 확장판 선단부착 PHC말뚝 및 강관 선단부착 PHC말뚝의 지지력 증대 효과는 거의 없는 것으로 나타났다. 최종재하하중단계에서 PHC말뚝, 확장판 선단부착 PHC말뚝, 강관 선단부착 PHC말뚝의 주면마찰력은 각각 전체 재하하중의 95.8%, 95.6%, 97.8%를 분담하였으며, 선단지지력은 전체 재하하중의 4.2%, 4.4%, 2.2%를 분담하였다.
References
  1. Baekkyung G&C Corp. (2017), Report of PHC piles for various end bearing types and splices, Dynamic test report, FR-PDA- BK20170623-A02, 2017. 08., pp.1-697 (in Korean).
  2. Choi, Y. K. (2017), Report of static pile load test including load distribution test for the axial load behavior with various end bearing type PHC piles, KGS, Report No. KGS09-038, 2017. 9., pp.1-51 (in Korean).
  3. Choi, Y. K., Kwon, O. K., Lee, W. J., and Yeo, K. K. (2017), Report for axial compressive load behavior of PHC piles with various end bearing types, KGS, Report No. KGS09-038, 2017. 9., pp.1-160 (in Korean).
  4. Cheon, B. S., Yoo, C. S., and Lee, W. J. (2009), Pile load test for EXT-PHC pile field application, KGS, Report No. KGS09-038, pp.1-71 (in Korean).
  5. Jeong, S. S., Kim, S. I., and Kim, H. T. (2011), Installation and design guide for EXT-PHC pile (Final report), KGS, Report No. KGS09-038, 2011. 1., pp.1-71 (in Korean).
  6. Jo, C. H. (2006), Bored pile method, ENG Book (in Korean).
  7. KICT (2012), Behavior and application of tip-extension PHC pile (in Korean).
  8. Kim, M. H. (2018a), Safe installation method project for extension plate PHC piles and bolt spliced PHC piles (Final report), Inje IACF, 2018. 9., pp.1-341 (in Korean).
  9. Kim. M. H. (2018b), Safe installation method project for extension plate PHC piles and bolt spliced PHC piles (Final report) Appendix, Inje IACF, 2018. 9., pp.A-1-1∼A-13-48 (in Korean).
  10. Korea Land & Housing Corp. (2017a), LH Special specification 23023 Precast pile foundation (The Bored Pile), pp.1-13.
  11. Korea Land & Housing Corp. (2017b), LH Special specification 23021 Precast pile foundation (The Driven Pile), pp.1-13.
  12. Paek, K. H. (2013), End bearing capacity increase technology for the bored pile using Smartpile, Architectural structure, 2013. 9·10, Vol.20, No.5, pp.72-78 (in Korean).
  13. Professional Engineer’s office Veesang (2017), Geotechnical investigation report for PHC piles with various end bearing types, 2017. 3 (in Korean).
  14. Yonsei Univ. (2009), Behavior characteristics of no-welding composite PHC piles through pile load test and numerical analysis, SampyoENC (in Korean).
Information
  • Publisher :The Korean Geotechnical Society
  • Publisher(Ko) :한국지반공학회
  • Journal Title :Journal of the Korean Geotechnical Society
  • Journal Title(Ko) :한국지반공학회 논문집
  • Volume : 34
  • No :11
  • Pages :107-119