All Issue

2020 Vol.36, Issue 11 Preview Page

Research Article

30 November 2020. pp. 21-33
Abstract
References
1
Ahn, J. K., Baek, W. H., Choi, J. S., and Kwak, D. Y. (2018), "Investigation of Pohang Earthquake Liquefaction Using 1D Effective-Stress Site Response Analysis", Journal of the Korean Geotechnical Society, Vol.34, No.8, pp.37-49.
2
Baek, W. H. and Choi, J. S. (2019), "Correlations of Earthquake Accelerations and LPIs for Liquefaction Risk Mapping in Seoul & Gyeonggi-do Area based on Artificial Scenarios", J. of the Korean Geo-Environmental Society, Vol.20, No.5, pp.5-12.
3
Baek, W.H., Choi, J.S., and Ahn, J.K. (2018), "Seismic Scenarios-based Liquefaction Hazard Map for Pohang Area", EESK J Earthquake Eng., Vol.22, No.3, pp.219-224. 10.5000/EESK.2018.22.3.219
4
Borcherdt, R. D. (1994), "Estimates of Site-Dependent Response Spectra for Design (Methodology and Justification)", Earthquake Spectra, Vol.10, pp.617-653. 10.1193/1.1585791
5
Choi, J. S., Park, I. J., Hwang, K., and Jang, J. (2018), "A Study on Seismic Liquefaction Risk Map of Electric Power Utility Tunnel in South-East Korea", Journal of the Korean Geo-environmental Society, Vol.19, No.10, pp.13-19.
6
Cubrinovski, M., Henderson, D., and Bradley, B. A. (2012), "Liquefaction Impacts in Residential Areas in the 2010-2011 Christchurch Earthquakes", International Symposium on Engineering Lessons Learned From the Giant Earthquake, 3-4 March 2012, pp.811-824.
7
Darendeli MB. Development of a new family of normalized modulus reduction and material damping curves, Doctor's thesis. University of Texas at Austin. 2001:131-153 (chapter 6). c2001.
8
Dobry, R., Ramos, R., and Power, M. S. (1999), "Site Factor and Site Categories in Seismic Codes", Technical Report MCEER-99-0010, Multidisciplinary Center for Earthquake Engineering Research.
9
Ha, Iksoo (2018), "Understanding of liquefaction phenomenon occurred during Pohang earthquake", The magazine of the Korean society of hazard mitigation, Vol.18, No.1, pp.13-17.
10
Idriss, I. M. and Sun, J. I. (1993), User's manual for SHAKE91: a computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits, http://nisee.berkeley.edu/elibrary/getpkg?id=SHAKE91
11
Iwasaki, T. (1978), "A Practical Method for Assessing Soil Liquefaction Potential based on Case Studies at Various Sites in Japan", In Proceedings of Second Int. Conf., Microzonation Safer Construction Research Application, Vol.2, pp.885-896.
12
Jang, Y. E., Seo, H. W., Kim, B. M., Han, J. T., and Park, D. H. (2020), "Selection of Ground Motions for the Assessment of Liquefaction Potential for South Korea", Journal of earthquake engineering society of Korea, Vol.24, No.2, pp.111-119. 10.5000/EESK.2020.24.2.111
13
Jeong, Nam-Hoon, Behavior of Shear Wave Velocity Based on Suspension PS Logging Tests, Doctor's thesis, Dankook University, pp.90-95.
14
Jin, Y. J., Park, K. J., and Song, B. W. (2014), "The Study for Ground Liquefaction Hazard Mapping with Simple Estimating Method", J. Korean Soc. Hazard Mitig., Vol.14, No.5, pp.199-204. 10.9798/KOSHAM.2014.14.5.199
15
Kazama, M., Noda, T., Mori, T., and Kim, J. (2012), "Overview of the Geotechnical Damages and the Technical Problems Posed After the 2011 off the Pacific Coast of Tohoku Earthquake", Geotechnical Engineering Journal of the SEAGS & AGSSEA, Vol.43, pp.49-56. 10.3208/jgs.7.1
16
Kim, Byungmin (2018), "Damage cases induced by Dec 15 2017 Pohang earthquake:Geotechnical engineering aspect", The magazine of the Korean society of hazard mitigation, Vol.18, No.1, pp.9~12.
17
Kim, D. S., Manandhar, S., and Cho, H. I. (2018), New site classification system and design response spectra in Korean seismic code, EARTHQUAKES AND STRUCTURES, 15(1), 1-8.
18
KLHC (2009), Measurement and application of shear wave velocity for resonable soil classification in seismic design, Korea Land and Housing Corporation.
19
KMA (2018), Pohang Earthquake Report, Korea Meteorological Administration.
20
MOIS (2017), Seismic Design General Application, Ministry of Interior and Safety.
21
Mun, G. Y. (2018), A Study on the Effect of Relative Density and Particle Size Distribution on the Liquefaction Resistance Strength of Sand in Pohang Liquefaction Region, Master's thesis, Pusan National University, pp.66-68.
22
NDMI (2017), The investigated result of liquefaction due to Pohang earthquake (2017.11.15.), National Disaster Management Research Institute.
23
Park, S. S., Nong, Z., Choi, S. G., and Moon, H. D. (2018), "Liquefaction Resistance of Pohang Sand", Journal of the Korean Geotechnical Society, Vol.34, No.9, pp.5-17.
24
Seed, H. B., Ugas, C., and Lysmer, J. (1976), "Site-dependent Spectra for Earthquake-resistant Design", Bulletin of the Seismological society of America, Vol.66, No.1, pp.221-243.
25
Sun CG, Han JT, Cho WJ. (2012), "Representative Shear Wave Velocity of Geotechnical Layers by Synthesizing In-situ Seismic Test Data in Korea", J. of Engineerng Geology, Vol.22, No.3, pp.293-307. 10.9720/kseg.2012.3.293
26
Sun, C. K., Kim, H. J., and Chung, C. K. (2008), Deduction of Correlations between Shear Wave Velocity and Geotechcnial In-situ Penetration Test Data, Journal of earthquake engineering society of Korea, Vol.12, No.4, pp.1-10. 10.5000/EESK.2008.12.4.001
27
Yamaguchi, A., Mori, T., Kazama, M., and Yoshida, N. (2012), "Liquefaction in Tohoku District during the 2011 off the Pacific Coast of Tohoku Earthquake", Soils and Foundations, Vol.52, No.5, pp.811-829. 10.1016/j.sandf.2012.11.005
Information
  • Publisher :The Korean Geotechnical Society
  • Publisher(Ko) :한국지반공학회
  • Journal Title :Journal of the Korean Geotechnical Society
  • Journal Title(Ko) :한국지반공학회 논문집
  • Volume : 36
  • No :11
  • Pages :21-33
  • Received Date : 2020-08-06
  • Revised Date : 2020-09-17
  • Accepted Date : 2020-09-20