All Issue

2018 Vol.34, Issue 12 Preview Page

December 2018. pp. 145-154
Abstract


References
1 

Byun, T.B., Kim, J.H., and Kim, H.S. (2006), The Recognition of Crack Detection Using Difference Image Analysis Method based on Morphology, J. of the Korea Institute of Information and Communication Engineering, Vol.10, No.1, pp. 197-205.

2 

Cha, Y.J. and Choi, W. (2017), Vision-Based Concrete Crack Detection Using a Convolutional Neural Network, Dynamics of Civil Structures, Vol.2, pp.71-73.

10.1007/978-3-319-54777-0_9
3 

Cho, S., Kim, B., and Lee, Y.I. (2018), Image-Based Concrete Crack and Spalling Detection using Deep Learning, J. of the Korean Society of Civil Engineers, Vol.66, No.8, pp.92-97.

4 

Kim, J.W. and Jung, Y.W. (2017), Study on rapid structure visual inspection technology using drones and image analysis techniques for Damaged Concrete Structures, Proceeding of the Korean Society of Civil Engineers, pp.1788-1789.

5 

Kim, K.B. and Cho, J.H. (2010), Detection of Concrete Surface Cracks using Fuzzy Techniques, J. of the Korea Institute of Information and Communication Engineering, Vol.14, No.6, pp.1353-1358.

10.6109/jkiice.2010.14.6.1353
6 

Kim, Y. (2016), Development of Crack Recognition System for Concrete Structure Using Image Processing Method, J. of Korean Institute of Information Technology, Vol.14, No.10, pp.163-168.

10.14801/jkiit.2016.14.10.163
7 

Lee, B.Y., Kim, Y.Y., and Kim, J.K. (2005), Development of Image Processing for Concrete Surface Cracks by Employing Enhanced Binarization and Shape Analysis Technique, J. of the Korea Concrete Institute, Vol.17, No.3, pp.361-368.

10.4334/JKCI.2005.17.3.361
8 

Lee, B.J., Shin, J.I., and Park, C.H. (2008), Development of Image Processing Program to Inspect Concrete Bridges, Proceedings of the Korea Concrete Institute, pp.189-192.

9 

Lee, J.H., Kim, I.H., and Jung, H.J. (2018), A Feasibility Study for Detection of Bridge Crack Based on UAV, Transactions of the Korean Society for Noise and Vibration Engineering, Vol.28, No.1, pp.110-117.

10.5050/KSNVE.2018.28.1.110
10 

Li W., Wang G., Fidon L., Ourselin S., Cardoso M.J., and Vercauteren T. (2017), On the Compactness, Efficiency, and Representation of 3D Convolutional Networks: Brain Parcellation as a Pretext Task. In: Niethammer M. et al. (eds) Information Processing in Medical Imaging. IPMI 2017. Lecture Notes in Computer Science, Vol. 10265. Springer, Cham.

10.1007/978-3-319-59050-9_28
11 

Özgenel, Ç.F. (2018), "Concrete Crack Images for Classification", Mendeley Data, v1 http://dx.doi.org/10.17632/5y9wdsg2zt.1

12 

Park, H.S. (2013), Performance Analysis of the Tunnel Inspection System Using High Speed Camera, J. of Korean Institute of Information Technology, Vol.11, No.4, pp.1-6.

10.14801/kiitr.2013.11.4.1
Information
  • Publisher :The Korean Geotechnical Society
  • Publisher(Ko) :한국지반공학회
  • Journal Title :Journal of the Korean Geotechnical Society
  • Journal Title(Ko) :한국지반공학회 논문집
  • Volume : 34
  • No :12
  • Pages :145-154
  • Received Date :2018. 12. 14
  • Accepted Date : 2018. 12. 27