All Issue

2018 Vol.34, Issue 10 Preview Page
October 2018. pp. 17-28
Abstract
Important parameters for the stability checks of cantilever wall are the active earth pressure and the weight of soil above the heel of the base slab. If the heel length is so long enough that the shear zone bounded by the failure plane is not obstructed by the stem of the wall, the Rankine active condition is assumed to exist along the vertical plane which is located at the edge of the heel of the base slab. Then the Rankine active earth pressure equations may be theoretically used to calculate the lateral pressure on the vertical plane. However, in case of the cantilever wall with a short heel, the application of Rankine theory is not only theoretically incorrect but also makes the lateral earth pressure larger than the actual pressure and results in uneconomical design. In this study, for the cantilever wall with a short heel the limit analysis method is used to investigate the mechanism of development of the active earth pressure and then the magnitude and location of the resultants of the pressure and the weight of the soil above the heel are determined. The calculated results are compared with the existing methods for the stability check. In case of the cantilever wall with a short heel, the results by the Mohr circle method and Teng’s method show max. 3.7% and 32% larger than those of the limit analysis method respectively.
캔틸레버 옹벽의 안정성 평가에서 중요한 변수는 옹벽에 작용하는 주동토압과 옹벽과 함께 움직이는 뒷굽 상부의 뒤채움토사의 무게이다. 캔틸레버 옹벽의 뒷굽 길이가 충분히 길면, 뒷굽 끝단에서의 연직면에 Rankine 토압이 작용한다고 가정하여 옹벽의 안정성을 평가해도 이론적으로 문제가 되지 않는다. 그러나 뒷굽이 짧은 캔틸레버 옹벽에 대하여 이와 같은 방법을 적용하는 것은 이론적으로 옳지 않으며, 주동토압을 실제보다 크게 산정하므로써 비경제적인 설계를 초래한다. 본 연구에서는 한계해석방법을 사용하여 캔틸레버 옹벽에 토압이 작용하는 메카니즘을 조사하고 이를 토대로 주동토압의 크기 및 합력의 위치, 뒤채움토사의 무게를 산정하였으며, 산정결과를 기존의 방법과 비교하였다. 뒷굽길이가 짧을 경우, 옹벽에 대한 안정성은 한계해석방법에 비해 기존의 Mohr원 방법은 최대 3.7%, Teng 방법은 최대 32% 크게 산정되었다.
References
  1. Yoo, K. S. (2017), "Analysis of Influencing Factors for Calculation of the Coulomb Earth Pressure for Cantilever Retaining Wall with a Short Heel", Journal of the Korean Geotechnical Society, Vol.33, No.11, pp.59-72.
  2. Chen, W. F. (1975), "Limit analysis and soil plasticity", Developments in Geotechnical engineering, vol. 7. Elsevier Scientific Publishing Company, Amsterdam, pp.341-351.
  3. Coulomb, C. A. (1976), "Essai sur une Application des Règles des Maximis et Minimis à quelques Problèmes de Statique Relatifs à l'Architecture", Mém. acad. roy. prés. divers savants, Vol.7, Paris.
  4. Smith, C. C. and Gilbert, M. (2007), "Application of discontinuity layout optimization to plane plasticity problems", Proc. Royal Society A, Volume 463, Number 2086, pp.2461-2484.10.1098/rspa.2006.1788
  5. Smith, C. C. and Gilbert, M. (2010), "Advances in computational limit state analysis and design", Advances in Analysis, Modeling, & Design, Proceedings of the GeoFlorida 2010 Conference.10.1061/41095(365)8
  6. Teng, W. C. (1962), "Foundation design", Prentice-Hall, Inc. pp. 316-317.
  7. Terzaghi, K. (1943), "Theoretical Soil Mechanics", JohnWiley & Sons, Inc. pp.26-99.10.1002/9780470172766.ch3
Information
  • Publisher :The Korean Geotechnical Society
  • Publisher(Ko) :한국지반공학회
  • Journal Title :Journal of the Korean Geotechnical Society
  • Journal Title(Ko) :한국지반공학회 논문집
  • Volume : 34
  • No :10
  • Pages :17-28
  • Received Date :2018. 08. 09
  • Accepted Date : 2018. 10. 15