All Issue

2020 Vol.36, Issue 1 Preview Page

Research Article


January 2020. pp. 17-28
Abstract


References
1 

Chang, I., Prasidhi, A. K., Im, J., and Cho, G. C. (2015), "Soil Strengthening Using Thermo-gelation Biopolymers", Construction and Building Materials, Vol.77, pp.430-438.

10.1016/j.conbuildmat.2014.12.116
2 

Cheng, L., Cord-Ruwisch, R., and Shahin, M. A. (2013), "Cementation of Sand Soil by Microbially Induced Calcite Precipitation at Various Degrees of Saturation", Canadian Geotechnical Journal, Vol.50, No.1, pp.81-90.

10.1139/cgj-2012-0023
3 

Cui, M. J., Zheng, J. J., Zhang, R. J., Lai, H. J., and Zhang, J. (2017), "Influence of Cementation Level on the Strength behaviour of Bio-cemented Sand", Acta Geotechnica, Vol.12, No.5, pp.971-986.

10.1007/s11440-017-0574-9
4 

DeJong, J. T., Fritzges, M. B., and Nüsslein, K. (2006), "Microbially Induced Cementation to Control Sand Response to Undrained Shear", Journal of Geotechnical and Geoenvironmental Engineering, Vol.132, No.11, pp.1381-1392.

10.1061/(ASCE)1090-0241(2006)132:11(1381)
5 

Feng, K. and Montoya, B. (2015), "Influence of Confinement and Cementation Level on the behavior of Microbial-induced Calcite Precipitated Sands under Monotonic Drained Loading", Journal of Geotechnical and Geoenvironmental Engineering, Vol.142, No.1, pp.04015057.

10.1061/(ASCE)GT.1943-5606.0001379
6 

Gao, Y., Hang, L., He, J., and Chu, J. (2019), "Mechanical behaviour of Biocemented Sands at Various Treatment Levels and Relative Densities", Acta Geotechnica, Vol.14, No.3, pp.697-707.

10.1007/s11440-018-0729-3
7 

Hamdan, N. and Kavazanjian Jr, E. (2016), "Enzyme-induced Carbonate Mineral Precipitation for Fugitive Dust Control", Géotechnique, Vol.66, No.7, pp.546-555.

10.1680/jgeot.15.P.168
8 

Kalantary, F. and Kahani, M. (2019), "Optimization of the Biological Soil Improvement Procedure", International Journal of Environmental Science and Technology, Vol.16, No.8, pp.4231-4240.

10.1007/s13762-018-1821-9
9 

Karol, R. H. (2003), "Chemical grouting and soil stabilization, revised and expanded", Crc Press.

10.1201/9780203911815
10 

Knorr, B. (2014), "Enzyme-induced carbonate precipitation for the mitigation of fugitive dust", Master Thesis, Arizona State University.

11 

Lade, P. V. and Overton, D. D. (1989), "Cementation Effects in Frictional Materials", Journal of Geotechnical Engineering, Vol.115, No.10, pp.1373-1387.

10.1061/(ASCE)0733-9410(1989)115:10(1373)
12 

Lee, J. S. and Santamarina, J. C. (2005), "Bender Elements: Performance and Signal Interpretation", Journal of geotechnical and geoenvironmental engineering, Vol.131, No.9, pp.1063-1070.

10.1061/(ASCE)1090-0241(2005)131:9(1063)
13 

Lin, H., Suleiman, M. T., Brown, D. G., and Kavazanjian Jr, E. (2015), "Mechanical behavior of Sands Treated by Microbially Induced Carbonate Precipitation", Journal of Geotechnical and Geoenvironmental Engineering, Vol.142, No.2, pp.04015066.

10.1061/(ASCE)GT.1943-5606.0001383
14 

Lockner, D., Byerlee, J., Kuksenko, V., Ponomarev, A., and Sidorin, A. (1991), "Quasi-static Fault Growth and Shear Fracture Energy in Granite", Nature, Vol.350, No.6313, pp.39.

10.1038/350039a0
15 

Neupane, D., Yasuhara, H., Kinoshita, N., and Unno, T. (2013), "Applicability of Enzymatic Calcium Carbonate Precipitation as a Soil-strengthening Technique", Journal of Geotechnical and Geoenvironmental Engineering, Vol.139, No.12, pp.2201-2211.

10.1061/(ASCE)GT.1943-5606.0000959
16 

Sherwood, P. (1993). "Soil stabilization with cement and lime", H.M. Stationery Office.

17 

Shi, C., Jiménez, A. F., and Palomo, A. (2011), "New Cements for the 21st Century: The Pursuit of an Alternative to Portland Cement", Cement and concrete research, Vol.41, No.7, pp.750-763.

10.1016/j.cemconres.2011.03.016
18 

Song, J. Y. (2019), "Evaluation of shear strength and stiffness in soils stabilized by enzyme induced carbonate precipitation", Master Thesis, Yonsei University.

19 

Song, J. Y., Ha, S. J., Sim, Y., Jin, K. N., and Yun, T. S. (2019), "Fine Dust Suppression by Enzyme Induced Carbonate Precipitation: Indoor Experiment and Field Application", Journal of the Korean Geotechnical Society, Vol.29, No.12, pp.11-24.

20 

Van Paassen, L. A., Daza, C. M., Staal, M., Sorokin, D. Y., van der Zon, W., and van Loosdrecht, M. C. (2010), "Potential Soil Reinforcement by Biological Denitrification", Ecological Engineering, Vol.35, No.10, pp.67-78.

10.1016/j.ecoleng.2009.03.026
21 

Whiffin, V. S., van Paassen, L. A., and Harkes, M. P. (2007), "Microbial Carbonate Precipitation as a Soil Improvement Technique", Geomicrobiology Journal, Vol.24, No.5, pp.417-423.

10.1080/01490450701436505
22 

Wong, T. F. (1982), "Micromechanics of faulting in Westerly granite", International journal of rock mechanics and mining sciences & geomechanics abstracts, Vol.19, No.2, pp.49-64.

10.1016/0148-9062(82)91631-X
23 

Yang, J. and Luo, X. (2018), "The critical state friction angle of granular materials: does it depend on grading?", Acta Geotechnica, Vol.13, No.3, pp.535-547.

10.1007/s11440-017-0581-x
24 

Zhu, T. and Dittrich, M. (2016), "Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review", Frontiers in bioengineering and biotechnology, Vol.4, pp.4.

10.3389/fbioe.2016.0000426835451PMC4718973
Information
  • Publisher :The Korean Geotechnical Society
  • Publisher(Ko) :한국지반공학회
  • Journal Title :Journal of the Korean Geotechnical Society
  • Journal Title(Ko) :한국지반공학회 논문집
  • Volume : 36
  • No :1
  • Pages :17-28
  • Received Date :2019. 11. 11
  • Revised Date :2020. 01. 10
  • Accepted Date : 2020. 01. 16