All Issue

2018 Vol.34, Issue 11 Preview Page
November 2018. pp. 57-70
In this study, verification of the nonlinear effective stress analysis is performed for introducing performance based earthquake resistance design of port and harbor structures. Seismic response of gravitational caisson quay wall in numerical analysis is compared directly with dynamic centrifuge test results in prototype scale. Inside of the rigid box, model of the gravitational quay wall is placed above the saturated sand layer which can show the increase of excess pore water pressure. The model represents caisson quay wall with a height of 10 m, width of 6 m under centrifugal acceleration of 60 g. The numerical model is made in the same dimension with the prototype scale of the test in two dimensional plane strain condition. Byrne’s liquefaction model is adopted together with a nonlinear constitutive model. Interface element is used for sliding and tensional separation between quay wall and the adjacent soils. Verification results show good agreement for permanent displacement of the quay wall, horizontal acceleration at quay wall and soil layer, and excess pore water pressure increment beneath the quay wall foundation.
본 논문에서는 항만구조물의 성능기반 내진설계 도입을 위해서 액상화를 포함하는 비선형 유효응력해석기법의 검증을 실시하였다. 중력식 케이슨안벽의 지진시 거동에 대해서 수치해석의 결과는 동적원심모형시험의 결과와 원형스케일로 직접 검증되었다. 중력식 안벽의 모형은 강성토조내에 지진시 과잉간극수압의 증가가 발생하는 포화 사질토지반위에 조성되었으며, 원심가속도 60g하에서 높이 10m, 폭 6m의 케이슨 안벽을 묘사할 수 있다. 원심모형시험의 원형스케일과 동일하게 2차원 평면 변형율 조건하에서 비선형 유효응력 수치해석 모델을 구성하였다. 지반의 비선형 거동모델과 함께 Byrne의 액상화 모델을 사용하였으며, 경계요소를 적용하여 안벽과 지반의 분리거동을 묘사하였다. 검증결과, 안벽의 잔류변위를 포함하여 지반 및 안벽의 수평가속도와 안벽기초 하부 사질토 지반의 과잉간극수압 증가양상 모두 유사한 결과를 나타내었다.
  1. Bellezza, I., Fentini, R., Fratalocchi, E., and Pasqualini, E. (2009), “Stability of Waterfront Retaining Walls in Seismic Conditions”, Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Egypt.
  2. Byrne, P.M. (1991), “A Cyclic Shear-volume Coupling and Pore- pressure Model for Sand”, Proceedings of Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, Paper No. 1.24, pp.47-55.
  3. Choo, Y.W. and Kim, D.S. (2005), “Dynamic Deformation Characteristics of Sands Under Various Drainage Conditions”, Journal of the Korean Geotechnical Society, Vol.21, No.3, pp.27-42
  4. Dokainish, M.A. and Subbaraj, K.A. (1988), “Survey of Direct Time-integration Methods in Computational Structural Dynamics—I. Explicit Methods”, Computers and Structures, Vol.32, pp. 1371-1386, DOI:10.1016/0045-7949(89)90314-3.
  5. Elgamal, A. W., Dobry, R., Parra, E., and Yang, Z. (1998), “Soil Dilation and Shear Deformations During Liquefaction”, Proceedings of Fourth International Conference on Case Histories in Geotechnical Engineering, St. Louis, Missouri.
  6. Kim, D.S. and Stokoe, K.H. (1994), “Torsional Motion Monitoring System for Small-Strain (10-5 to 10-3%) Soil Testing”, Geotechnical Testing Journal, Vol.17, No.1, 1994, pp.17-26, 10.1520/GTJ10068J.
  7. Kim, S.N., Lee, M.G., Ha, J.G., Kim, J.H., and Kim, D.S. (2017), “Comparison of Liquefaction Behavior with Different Relative Density using Centrifuge Test”, Proceedings of The 30th KKHTCNN Symposium on Civil Engineering, National Taiwan University, Taipei, Taiwan.
  8. Kim, S.R., Kwon, O.S., and Kim M.M. (2004), “Evaluation of Force Components Acting on Gravity Type Quay Walls During Earthquakes”, Soil Dynamics and Earthquake Engineering, Vol. 24, pp.853-866.
  9. Kuhlemeyer, R.L. and Lysmer, J. (1973), “Finite Element Method Accuracy for Wave Propagation Problems”, Journal of Soil Mechanics and Foundation Engineering Division, ASCE, Vol.99, No.5, pp. 421-427.
  10. Hardin, B.O. and Drnevich, V.P. (1972), “Shear Modulus and Damping in Soils: Design Equations and Curves”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.98, No.SM7, pp.667-692.
  11. Itasca Consulting Group (2018), FLAC2D (Fast Lagrangian Analysis of Continua in 2 Dimensions) User’s Guide, Minnesota, USA.
  12. Martin, G.R., Finn, W.D.L., and Seed, H.B. (1975), “Fundamentals of Liquefaction under Cyclic Loading”, Journal of Geotechnical Engineering Division, ASCE, Vol.101, (GT5), pp.423-438.
  13. Matsusawa, H., Ishibashi, I., and Kawamura, M. (1985), “Dynamic Soil and Water Pressures on Submerged Soils”, Journal of the Geotechnical Engineering Division, ASCE, Vol.CV, No.4, pp. 449-464.
  14. Mejia, L.H. and Dawson, E.M. (2006), “Earthquake Deconvolution for FLAC”, Proceedings of 4th International FLAC Symposium on Numerical Modelling in Geomechanics, Paper 04-10, ISBN 0- 9767577-0-2.
  15. Ministry of Oceans and Fisheries (2016), Development of performance- based seismic design technologies for advancement in design codes for port structures, KIMST, Project No.
  16. Nozu, A., Ichii, K. and Sugano, T. (2004), “Seismic Design of Port Structures”, Journal of Japan Association for Earthquake Engineering, Vol.4 No.(3-SP), pp.195-208.
  17. Okamura, M. and Inoue, T. (2012), “Preparation of Fully Saturated Models for Liquefaction Study”, International Journal of Physical Modelling in Geotechnics, Vol.12, No.1, pp.39-46.
  18. Youd, T.L. (1977), “Packing Changes and Liquefaction Susceptibility”, Journal of the Geotechnical Engineering Division, ASCE, Vol.103, GT8, pp.918-923.
  19. Wener, P.W. and Sundquist, K.J. (1949), “On Hydrodynamic Earthquake Effects”, Trans. American Geophysical Union, Vol.30.
  20. Westergaard H. M. (1933), “Water Pressures on Dams during Earthquakes”, Trans. ASCE 98, pp.418-433.
  • Publisher :The Korean Geotechnical Society
  • Publisher(Ko) :한국지반공학회
  • Journal Title :Journal of the Korean Geotechnical Society
  • Journal Title(Ko) :한국지반공학회 논문집
  • Volume : 34
  • No :11
  • Pages :57-70